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Abstract. We have evaluated interatomic potentials of Cu, Au and Cu–Au L12 ordered alloys
in the framework of the second-moment approximation to the tight-binding theory by fitting
to the volume dependence of the total energy of these materials computed by first-principles
augmented-plane-wave calculations. We have applied this scheme to calculate the bulk modulus
and elastic constants of the pure elements and alloys and we have obtained a good agreement with
experiment. We also have performed molecular-dynamics simulations at various temperatures,
deducing the temperature dependence of the lattice constants and the atomic mean square
displacements, as well as the phonon density of states and the phonon-dispersion curves of
the ordered alloys. A satisfactory accuracy was obtained, comparable to previous works based
on the same approximation, but resulting from fitting to various experimental quantities.

1. Introduction

Atomistic computer modelling has been developed over the last twenty years in condensed-
matter and materials research, in order to offer a direct and unique microscopic view of
a system [1–5]. The description of the atomic interactions (the so-called ‘interatomic
potential’) plays a central role in any atomistic simulation, ranging from accurate first-
principles electronic-structure techniques [6] to simple empirical schemes [7, 8]. It is
recognized that fully self-consistentab initio electronic structure methods are superior and
highly accurate, but that they cannot be as efficient as empirical potentials for simulations
requiring large systems and long time scales. The many-body potential schemes for metals
and intermetallic alloys include the embedded-atom method [9], the effective medium
theory [10], the Finnis–Sinclair potentials [11], the glue model [12] and the second-moment
approximation (SMA) to the tight-binding (TB) model [13–15]. The above potentials, while
simple, in many cases provide a good and quick description of the bonding and energetics
in metallic systems. For this reason these potentials are still useful and should play a
supplementary role to other more accurate techniques.

In the SMA scheme [14], the total cohesive energy of the system consists of a band
term, proportional to the square root of the second moment of the density of states [16], and
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a repulsive pair-potential term which contains the non-band-structure parts of the energy,
such as electrostatic and exchange–correlation interactions. The SMA expression of the
total energy is based on a small set of empirical parameters that are usually determined
by matching with experimental data, including the cohesive energy, lattice constant, bulk
modulus and independent elastic constants of the system [15, 17]. The extension of the
range of the potential includes a great number of interacting neighbours (typically up to
fifth neighbours) and has been found to provide better and more realistic results compared
to experiment [17–21].

Recently, the above approach has been applied to some binary cubic alloys of
technological interest, such as Ni3Al [17] and Cu3Au [17, 22–26], aiming to describe their
basic thermodynamical and structural properties. In these studies the parameters for the
interactions between like atoms in the alloy have been assumed to be the same as in the
respective pure metals. As a result, only the cross-interaction parameters have been fitted to
the experimental data of the alloy. On the other hand, in previous studies [27] we presented
an alternative and equally successful approach to parametrizing the expression for the total
energy of noble metals within the SMA. In this case we did not use the experimental
quantities of the metals (cohesive energy, lattice parameter and elastic constants); instead
we fitted to the total energy obtained from first-principles augmented-plane-wave (APW)
calculations as a function of volume.

The purpose of the present work is to extend the above alternative approach to binary
alloys by developing an interatomic potential for Cu–Au alloys in the framework of the
SMA model. The choice of that compound is based on the fact that it has often served
as a prototypical system, showing order–disorder phase transition, bimetallic interface and
two-dimensional alloys and therefore has been extensively investigated both experimentally
and theoretically [28]. In order to validate the quality of our parameters, we calculated the
bulk modulus and the elastic constants of pure metals and ordered alloys. Furthermore, we
performed molecular-dynamics (MD) simulations at various temperatures and we obtained
the variation of the lattice constants and the atomic mean square displacements (MSD) of
the alloys as a function of the temperature. Finally, we derived the phonon density of states
(DOS) and the phonon-dispersion curves of the alloys, which we compared with available
experimental values.

The paper is organized as follows: in section 2 we describe the computational method,
while the results and their comparison with experiment are discussed in section 3. The last
section is devoted to conclusions.

2. Computational methodology

The electronic band structure of the noble metals Cu, Au (fcc structure) and their ordered
alloys Cu3Au, Au3Cu (L12 structure) was calculated self-consistently by the APW method
within the muffin-tin approximation [29]. We used the Hedin–Lundqvist parametrization
[30] of the local-density approximation (LDA) [31] to density-functional theory [32].
The core levels were treated by a fully relativistic calculation as atomic levels in each
iteration, while the outer 11 electrons of each element were treated as band electrons in
the semirelativistic approximation [33] (neglecting spin–orbit coupling) on a mesh of 89k
and 35k points in the irreducible Brillouin zone for the fcc and L12 structure respectively.
The total energy was computed from Janak’s expression [34] by using the resulting self-
consistent crystal potential, charge density and the eigenvalue sum. We calculated the total
energy for five different lattice constants and by a parabolic fitting [35] we determined the
equilibrium lattice constant and the total-energy curve.
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As has been noted in section 1, the total energy of the system, within the SMA model
[14, 17], is written as:
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where the first sum corresponds to the pair-potential repulsive term of Born–Mayer type
and the second sum to the band-structure term, which has a many-body character due to its
square root form. In the expression (1),N is the number of the particles,rij is the distance
between atomsi andj of the speciesα andβ respectively (α, β stand for Cu or Au) and
the sums overj are extended up to fifth neighbours. Usuallyrαβ0 is taken equal to the
first-neighbour distance in the pure systems (α ≡ β) and the alloys (a 6= β) [17, 22–26].
In the present caserαβ0 is taken to be three additional free parameters, which with the
other 12 adjustable parametersAαβ , ξαβ , pαβ andqαβ describe the interactions in the pure
elements and in the stoichiometric alloys. These 15 parameters have been determined from
the expression (1) by simultaneous fitting to the APW total-energy curves as a function
of volume for the pure metals Cu, Au and the L12 alloys Cu3Au, Au3Cu. An attempt
to also include the CuAu alloy in the fitting procedure did not give very good agreement
with experiment for all the elastic constants and therefore we decided to deal with only
the fcc-based alloys. The fits have been performed using the MERLIN package, which
provides several minimization algorithms [36]. It should be noted that before the fitting
procedure, we subtracted from each APW total-energy curve the corresponding energies
of isolated atoms, calculated in the LDA by a relativistic formalism, i.e. we constructed
the cohesive energy curves. Furthermore, we shifted the computed cohesive energy graphs
uniformly, so that at the minimum each curve gives the experimental cohesive energy of
the corresponding system, given that the total energy of isolated atoms is not sufficiently
accurate within the LDA approach.

Using the expression (1) with the adjusted parameters, we calculated the bulk modulus
of the metals and alloys by the method proposed in [35]. In addition, the elastic constants
were calculated at the experimental lattice constant at room temperature by evaluating the
total energy using an orthorhombic and a monoclinic strain on the lattices [37] and then
determining the difference in total energies of the distorted and undistorted lattices.

Furthermore, we performed MD simulations for the ordered alloys in the canonical
ensemble aiming to test the behaviour of this model and the quality of our parameters at
finite temperatures. The system was made up of 4000 particles arranged on an fcc lattice. In
the case of Cu3Au, the Au atoms occupy the corner sites, while Cu atoms occupy the face
centres of the basic cube; the opposite occurs for Au3Cu. The simulation box contained 20
layers with 200 atoms each and periodic boundary conditions were applied in space. For the
integration of the equations of motion we used a time step of 5 fs and the Verlet algorithm.
Thermodynamical averages were computed over 50 ps trajectories after preliminary thermal
equilibrium runs of 10 ps. At each temperature the lattice constant of the alloy was adjusted
to a value resulting in zero pressure in the system. The atomic mean square displacements
were deduced from the local-density profiles along a direction perpendicular to the atomic
layers, while the phonon DOS was calculated by Fourier transforming the velocity auto-
correlation function. Similar transformations were done in order to obtain the phonon
spectral densities for a given polarization at a specifick vector in the first Brillouin zone
and to also derive the phonon dispersion curves. Details of these calculational procedures
are reported elsewhere [20, 27].
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3. Results and discussion

In table 1 we give the calculated equilibrium lattice parameters and cohesive energies of the
pure metals Cu, Au and their ordered alloys in the L12 structure, as well as the corresponding
measured values [38–41]. The differences between predictions of lattice constants from the
APW method and experimental values [38, 39] are very small, with the error ranging from
0.3% in Cu3Au to 1.9% in Cu. Concerning the cohesive energies, we note a remarkable
agreement with experiment for Au [40], while for Cu the error compared to experiment [40]
is 31% due to the well known inaccuracy of the LDA approach for atoms. On the other
hand, the computed cohesive energies of the alloys agree within 10% with the experimental
data of [41].

Table 1. Calculated (Calc.) and experimental (Expt.) lattice parameters [38, 39],a, along with
the cohesive energiesEc, for Cu, Au [40] and their L12 ordered alloys [41]. Note that the
experimental lattice parameter of Au3Cu refers to room temperature.

a (Å) Ec (eV)

Compound Calc. Expt. Calc. Expt.

Cu 3.53 3.60 4.65 3.54
Cu3Au 3.75 3.74 4.06 3.64
Au3Cu 4.00 3.98 3.45 3.79
Au 4.06 4.07 3.77 3.78

Figure 1. Volume dependence of the opposite of calculated cohesive energies per atom of Cu,
Au, Cu3Au and Au3Cu. Solid lines refer to the APW results; filled symbols correspond to the
results of the fit (equation (1)).

In figure 1 we plot the calculated cohesive energies per atom (with opposite sign) of the
metals Cu, Au and their stoichiometric alloys Cu3Au and Au3Cu as a function of the volume
(solid lines) after the energy shifts, so that at the minimum they give the experimental value
of the corresponding cohesive energy. In the same graph we also show (with filled symbols)
the results of the fit using the expression (1). We observe that this simultaneous fitting to
the first-principles energy curves is almost perfect for all the systems under study. From
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this adjustment we have obtained the 15 potential parameters of the expression (1) listed in
table 2.

Table 2. Potential parameters of equation (1) obtained by fitting to the APW calculated volume
dependence of the cohesive energies of Cu, Au, Cu3Au and Au3Cu.

αβ ξαβ (eV) Aαβ (eV) qαβ pαβ r
αβ

0 (Å)

Au–Au 1.8241 0.2145 4.3769 10.8842 2.8652
Cu–Cu 1.2355 0.0862 2.3820 12.5785 2.4729
Cu–Au 1.7981 0.2356 2.6433 8.6961 2.6222

Table 3. Comparison between calculated and experimental values of bulk modulusB and elastic
constants (in GPa) for Cu, Au and their L12 ordered alloys. The computations were performed
within the SMA method and the experimental elastic constants were taken from [38].

Calculated (GPa) Experimental (GPa)

Compound B C11 C12 C44 B C11 C12 C44

Cu 142 180 122 86.8 137 168 121 75
Cu3Au 137 166 122 69.3 151 189 132 73.6
Au3Cu 169 197 155 58.9 166 189 155 47
Au 204 226 193 47.5 169 189 159 42

The above parameters have been used to calculate the bulk moduli and elastic constants
of the pure metals and ordered L12 alloys. In table 3 we report these computed results,
along with available experimental values [38]. The accuracy of these quantities is fairly
good, since they differ from the experimental results by less than 20%. This is the same
level of accuracy found in the first-principles linearized APW (LAPW) calculations and in
the elaborate TB method results of [42]. In the case of the L12 alloys our computed bulk
moduli for Cu3Au and Au3Cu are consistent with LAPW results [41] (140 and 194 GPa)
and with augmented-spherical-wave calculations [43] (188 and 186 GPa) respectively.

We have also made a prediction of the cohesive energy of the CuAu (I) ordered alloy
that crystallizes in L10 tetragonal structure withc/a = 0.926 [44]. By employing our
parameters at the experimental ratioc/a, we deduced a cohesive energy, 3.72 eV, which
agrees well with the value of 3.74 eV reported in [41].

A very good validation of the interatomic potential can be realized by performing MD
simulations at various temperatures. In the case of pure metals, the present parameters
give results similar to those we obtained in [27]. In figures 2(a) and 2(b) we present
the computed temperature dependence of lattice constants of L12 ordered alloys, as well
as available measurements [39, 45]. We see that the maximum lattice constant deviation
between calculation and experiment in the case of Cu3Au is only 0.25% at room temperature,
while the differences are smaller as the temperature increases (figure 2(a)). Concerning
Au3Cu (figure 2(b)), we observe a disagreement of 1.04% in the lattice constant at room
temperature. It should be noted here that our MD simulations do not show the order–disorder
transition due to time limitations and the absence of defects [23].

In figures 3(a) and 3(b) we plot the atomic mean square displacements as a function of
temperature (dashed lines) for Cu and Au atoms in the ordered alloys Cu3Au and Au3Cu,
respectively, as obtained from our MD simulations, along with some low- and room-
temperature experimental values [46]. Our results for Cu3Au are in very good agreement
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(a)

(b)

Figure 2. Lattice parameters of (a) Cu3Au and (b) Au3Cu as a function of temperature. The
filled circles correspond to the results of the simulation, while the triangles to the experimental
data from [45] and [39] for Cu3Au and Au3Cu respectively. The dashed lines are to guide the
eye.

with the measured values (figure 3(a)), as well as with a previous MD simulation based
on the same potential form, but resulting from fitting to experimental quantities [23]. In
addition, our computed MSDs for Cu3Au (figure 3(a)) are in satisfactory agreement with
available averaged experimental data [47], 0.023 Å2, just below the critical temperature
of the order–disorder transition. From figures 3(a) and 3(b) it can be observed that the
MSDs of Cu are larger than those of Au atoms in both ordered alloys. These results
are in accordance with the low- and room-temperature measurements [46] as can be seen
in figure 3(a). Furthermore, this finding is compatible with the experimental evidence
using inelastic neutron scattering techniques that in ordered Cu3Au the atomic Cu–Au force
constants are five times stronger than the Cu–Cu force constants [48]. This difference
between Cu–Au and Cu–Cu force constants can be attributed to the difference in the atomic
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(a)

(b)

Figure 3. Temperature dependence of mean square displacements of (a) Cu3Au and (b) Au3Cu.
The open circles and triangles correspond to the simulation results for Cu and Au atoms
respectively. Experiment: crosses (Cu) and open squares (Au) from [46]. The dashed lines
are to guide the eye.

radii of these ions—the radius of the Au ion is larger than that of the Cu ion—and to the
internal energy of the system [48]. The difference between the vibrational amplitudes of
each metal becomes more important in Cu3Au as the temperature increases, while in Au3Cu
the two curves remain almost parallel, and close to each other. This also can be explained
by the difference in force constants, in masses and in the geometry of the two alloys. To
our knowledge the results for Au3Cu are new in the literature.

The phonon densities of states for the two L12 alloys are shown in figures 4(a) and
4(b) at room temperature. In these plots we present our phonon frequency spectra for
comparison using the parameters of table 2 (solid lines), along with the corresponding
spectra using the parameters of [24] (filled circles), which have been deduced from fitting to
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(a)

(b)

Figure 4. Phonon DOS of (a) Cu3Au and (b) Au3Cu at 300 K. Solid lines refer to our MD
results using the parameters of table 2; filled circles correspond to MD results using those of
[24].

experimental quantities. It should be noted here that the DOS shapes are smooth and without
sharp discontinuities, because they were computated by a Fourier transform of the velocity
autocorrelation function. The phonon spectra of both ordered alloys contain several modes
denoting the strong interactions between Cu and Au and they are very different compared
with those of pure metals [27]. Comparing our phonon spectra with those calculated from the
data of [24], we observe a reasonable agreement for the cutoff frequency and most modes,
except for a shift of 0.5 THz toward lower frequencies in the centre of the spectrum for
Cu3Au and higher frequencies in the right part of spectrum for Au3Cu. These differences
could be resolved by direct comparison with the measured phonon DOS which are not
available. Our phonon DOS for Cu3Au is also in satisfactory agreement with that of [22],
in which a fitting of SMA parameters to experimental data has also been done.
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(a)

(c)

(b)

(d)

Figure 5. Phonon-dispersion curves of ordered Cu3Au at 300 K for (a), (b) the [100], (c), (d),
(e) the [110], and (f), (g) the [111] directions. Solid lines correspond to MD simulations after
a cubic spline interpolation; filled circles refer to the experimental results from [48].
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(e)

(g)

(f)

Figure 5. (Continued)

The phonon-dispersion curves of ordered Cu3Au along the high-symmetry [100], [110]
and [111] directions at room temperature are presented in figures 5(a)–5(g), together with
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the experimental data using inelastic neutron scattering techniques [48]. The agreement
between simulation and measurements is fairly satisfactory, except for the crossing of modes
along the [100] direction in the high-frequency region, figure 5(b) (transverse phonons T).
This feature also has been found in [22], where the SMA approach has been applied by
fitting to experimental quantities. We note that there is a remarkable agreement with the
experiment [48] in the value of the splitting between the transverse acoustic and optical
modes in the [111] direction (figure 5(g)): this gap was found to be 8.9 meV, compared
to the experimental value of 8 meV. However, there is a discrepancy with [22] where a
gap of only 3.5 meV is reported. This result supports the procedure of obtaining the SMA
parameters from first-principles total-energy data rather than experimental quantities.

4. Conclusions

We presented an alternate approach of determining the parameters of interatomic potentials
of Cu, Au and Cu–Au L12 ordered alloys within the second-moment approximation of
the tight-binding theory by adjusting to the total-energy APW calculations as a function
of volume. This scheme provided fairly accurate results for the bulk modulus, elastic
constants of pure metals and ordered alloys, and predicted a correct cohesive energy for
the tetragonal L10 CuAu alloy. Furthermore, we used this interatomic potential to perform
finite-temperature molecular-dynamics simulations and found that the lattice constants and
the atomic mean square displacements of stoichiometric alloys determined as a function of
temperature are in good agreement with measurements. Finally, we obtained the phonon
spectra and phonon dispersion curves with accuracy comparable to that found by the standard
SMA, in which the parameters are fitted to several experimental data. An extension of
the above described procedure to disordered alloys should be very useful in investigating
changes of the vibrational properties upon disorder.
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